2 research outputs found

    Fast and Exact Convex Hull Simplification

    Get PDF

    Clustering with Neighborhoods

    Get PDF
    In the standard planar kk-center clustering problem, one is given a set PP of nn points in the plane, and the goal is to select kk center points, so as to minimize the maximum distance over points in PP to their nearest center. Here we initiate the systematic study of the clustering with neighborhoods problem, which generalizes the kk-center problem to allow the covered objects to be a set of general disjoint convex objects C\mathscr{C} rather than just a point set PP. For this problem we first show that there is a PTAS for approximating the number of centers. Specifically, if roptr_{opt} is the optimal radius for kk centers, then in nO(1/ε2)n^{O(1/\varepsilon^2)} time we can produce a set of (1+ε)k(1+\varepsilon)k centers with radius ropt\leq r_{opt}. If instead one considers the standard goal of approximating the optimal clustering radius, while keeping kk as a hard constraint, we show that the radius cannot be approximated within any factor in polynomial time unless P=NP\mathsf{P=NP}, even when C\mathscr{C} is a set of line segments. When C\mathscr{C} is a set of unit disks we show the problem is hard to approximate within a factor of 133236.99\frac{\sqrt{13}-\sqrt{3}}{2-\sqrt{3}}\approx 6.99. This hardness result complements our main result, where we show that when the objects are disks, of possibly differing radii, there is a (5+23)8.46(5+2\sqrt{3})\approx 8.46 approximation algorithm. Additionally, for unit disks we give an O(nlogk)+(k/ε)O(k)O(n\log k)+(k/\varepsilon)^{O(k)} time (1+ε)(1+\varepsilon)-approximation to the optimal radius, that is, an FPTAS for constant kk whose running time depends only linearly on nn. Finally, we show that the one dimensional version of the problem, even when intersections are allowed, can be solved exactly in O(nlogn)O(n\log n) time
    corecore